Evaluation of a Method for Determining Binaural Sensitivity to Temporal Fine Structure (TFS-AF Test) for Older Listeners With Normal and Impaired Low-Frequency Hearing
نویسندگان
چکیده
The ability to process binaural temporal fine structure (TFS) information was assessed using the TFS-AF test (where AF stands for adaptive frequency) for 26 listeners aged 60 years or more with normal or elevated low-frequency audiometric thresholds. The test estimates the highest frequency at which a fixed interaural phase difference (IPD) of ϕ (varied here between 30° and 180°) can be discriminated from an IPD of 0°, with higher thresholds indicating better performance. A sensation level of 30 dB was used. All listeners were able to perform the task reliably, giving thresholds well above the lowest allowed frequency of 30 Hz. The duration of a run averaged 5 min. Repeated testing of the normal-hearing listeners showed no significant practice effects. Thresholds varied markedly across listeners, but their ranking was fairly consistent across values of ϕ. Thresholds decreased (worsened) with decreasing ϕ and were lower than for a group of young listeners tested in an earlier study. There were weak to moderate, negative correlations between TFS-AF thresholds and audiometric thresholds at low frequencies (125-1000 Hz) but not at high frequencies (4000-8000 Hz). In conclusion, the TFS-AF test yielded a graded measure of binaural TFS sensitivity for all listeners. This contrasts with the TFS-LF (low-frequency) test, which measures the smallest detectable shift in IPD for a fixed frequency. The absence of practice effects and a reasonably short administration time make the TFS-AF test a good candidate for the assessment of sensitivity to changes in binaural TFS for older listeners without or with hearing loss.
منابع مشابه
Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing.
Frequency selectivity, temporal fine-structure (TFS) processing, and speech reception were assessed for six normal-hearing (NH) listeners, ten sensorineurally hearing-impaired (HI) listeners with similar high-frequency losses, and two listeners with an obscure dysfunction (OD). TFS processing was investigated at low frequencies in regions of normal hearing, through measurements of binaural mask...
متن کاملTemporal Fine-Structure Coding and Lateralized Speech Perception in Normal-Hearing and Hearing-Impaired Listeners
This study investigated the relationship between speech perception performance in spatially complex, lateralized listening scenarios and temporal fine-structure (TFS) coding at low frequencies. Young normal-hearing (NH) and two groups of elderly hearing-impaired (HI) listeners with mild or moderate hearing loss above 1.5 kHz participated in the study. Speech reception thresholds (SRTs) were est...
متن کاملRelating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity1
Older listeners are more likely than younger listeners to have difficulties in making temporal discriminations among auditory stimuli presented to one or both ears. In addition, the performance of older listeners is often observed to be more variable than that of younger listeners. The aim of this work was to relate age and hearing loss to temporal processing ability in a group of younger and o...
متن کاملSensitivity to temporal fine structure and hearing-aid outcomes in older adults
OBJECTIVE To investigate the effect of sensitivity to temporal fine structure (TFS) on subjective measures of hearing aid outcome. DESIGN Prior to receiving hearing aids, participants completed a test to assess sensitivity to TFS and two self-assessment questionnaires; the Glasgow Hearing Aid Benefit Profile (GHABP), and the Speech, Spatial and Qualities of hearing (SSQ-A). Follow-up appointm...
متن کاملSpatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥90...
متن کامل